Direct identification of base-paired RNA nucleotides by correlated chemical probing.

نویسندگان

  • Andrey Krokhotin
  • Anthony M Mustoe
  • Kevin M Weeks
  • Nikolay V Dokholyan
چکیده

Many RNA molecules fold into complex secondary and tertiary structures that play critical roles in biological function. Among the best-established methods for examining RNA structure are chemical probing experiments, which can report on local nucleotide structure in a concise and extensible manner. While probing data are highly useful for inferring overall RNA secondary structure, these data do not directly measure through-space base-pairing interactions. We recently introduced an approach for single-molecule correlated chemical probing with dimethyl sulfate (DMS) that measures RNA interaction groups by mutational profiling (RING-MaP). RING-MaP experiments reveal diverse through-space interactions corresponding to both secondary and tertiary structure. Here we develop a framework for using RING-MaP data to directly and robustly identify canonical base pairs in RNA. When applied to three representative RNAs, this framework identified 20%-50% of accepted base pairs with a <10% false discovery rate, allowing detection of 88% of duplexes containing four or more base pairs, including pseudoknotted pairs. We further show that base pairs determined from RING-MaP analysis significantly improve secondary structure modeling. RING-MaP-based correlated chemical probing represents a direct, experimentally concise, and accurate approach for detection of individual base pairs and helices and should greatly facilitate structure modeling for complex RNAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating Chemical Footprinting Data into RNA Secondary Structure Prediction

Chemical and enzymatic footprinting experiments, such as shape (selective 2'-hydroxyl acylation analyzed by primer extension), yield important information about RNA secondary structure. Indeed, since the [Formula: see text]-hydroxyl is reactive at flexible (loop) regions, but unreactive at base-paired regions, shape yields quantitative data about which RNA nucleotides are base-paired. Recently,...

متن کامل

Analysis of the RNA backbone: structural analysis of riboswitches by in-line probing and selective 2'-hydroxyl acylation and primer extension.

RNA sequences fold upon themselves to form complex structures. Functional analysis of most biological RNAs requires knowledge of secondary structure arrangements and tertiary base interactions. Therefore, rapid and comprehensive methods for assessing RNA structure are highly desirable. Computational tools are oftentimes employed for prediction of secondary structure. However, a greater degree o...

متن کامل

Functional requirements for specific ligand recognition by a biotin-binding RNA pseudoknot.

Ligand-binding RNAs and DNAs (aptamers) isolated by in vitro selection from random sequence pools provide convenient model systems for understanding the basic relationships between RNA structure and function. We describe a series of experiments that define the functional requirements for an RNA motif that specifies high-affinity binding to the carboxylation cofactor biotin. A simple pseudoknot ...

متن کامل

RNA structure inference through chemical mapping after accidental or intentional mutations.

Despite the critical roles RNA structures play in regulating gene expression, sequencing-based methods for experimentally determining RNA base pairs have remained inaccurate. Here, we describe a multidimensional chemical-mapping method called "mutate-and-map read out through next-generation sequencing" (M2-seq) that takes advantage of sparsely mutated nucleotides to induce structural perturbati...

متن کامل

Conformational analysis of the 5' leader and the gag initiation site of Mo-MuLV RNA and allosteric transitions induced by dimerization.

Dimerization of genomic RNA is a key step in the retroviral life cycle and has been postulated to be involved in the regulation of translation, encapsidation and reverse transcription. Here, we have derived a secondary structure model of nucleotides upstream from psi and of the gag initiation region of Mo-MuLV RNA in monomeric and dimeric forms, using chemical probing, sequence comparison and c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RNA

دوره 23 1  شماره 

صفحات  -

تاریخ انتشار 2017